由于依靠汲取溶液的渗透压代替外加机械抽吸压力进行膜分离,与传统浸没式MBR相比,FO-MBR具有较低的膜污染趋势,较高的水力停留时间也会产生高品质的处理水。除了具备上述优势,FO-MBR也存在膜通量低、汲取溶液反向渗透进入MBR等问题,较高的内部浓差极化是引起膜通量下降的主要原因。另外FO-MBR高水力停留时间会引起进水中盐类物质积累而抑制生物活性,有研究表明可通过优化SRT、定期去除混合液上清液的方式来解决这个问题。
近年来温室气体排放使得对消耗大量资源、能源,排放大量温室气体的传统污水处理技术提出反思。厌氧生物处理是有效的从污水中回收能源的技术之一。由于MBR将HRT与SRT相分离,厌氧MBR(AnMBR)能够维持较高生物量。
Chen等将FO与AnMBR组合成FO-MBR,该工艺能去除96%的有机碳、几乎100%的总磷和62%的氨氮,产生的生物气中CH4和CO2分别占65%-78%和22%-35%,达到了平均0.21LCH4/gCOD的沼气产率,且生物反应器中盐度的增加没有对生物过程产生抑制或毒性效应,FO-AnMBR表现出在污水能源回收与利用方面的可能性。
3.3正渗透—反渗透组合工艺
单独正渗透和FO-MBR都需要配备汲取溶液分离、回收装置,并且FO-MBR中膜组件直接接触活性污泥混合液,仍会产生较为严重的膜污染问题。将正渗透(FO)与反渗透(RO)组合用于污水处理,正渗透用浓汲取溶液的渗透压于从原污水中分离纯水形成稀汲取溶液,反渗透(RO)则从稀汲取溶液中分离纯水,汲取溶液在其中循环利用(只需根据蒸发、反向渗透、漏失等耗损情况适当补充),是可行的新型污水处理技术。
York等早在1999年就发现FO/RO组合工艺具有对垃圾渗滤液出色的处理能力,水回收率高达95%,并且产水水质优良,达到当地淡水环境水质标准的要求。Holloway等也研究发现以FO作为RO预处理单元的FO/RO组合工艺处理厌氧消化液时,在较长的运行时间内表现出可持续的水通量和较高的污染物去除能力,进一步用数学模型对该工艺进行了模拟,结果表明RO组件是系统的主要能耗单元,FO预处理单元要求较大的膜面积,综合考虑能耗和膜面积需求的最优水回收率为70%。
FO-RO应用于低浓度城市污水时,会使原污水得到浓缩从而提高有机物、氨氮、磷等物质的浓度,有利于后续厌氧消化回收能源、厌氧氨氧化自养脱氮、磷资源回收等可持续污水处理工艺的进行,是解决低浓度城市污水可持续处理难题的有效措施之一。Lutchmiah等提出了“sewagemining”的概念:利用FO耦合反渗透(RO)直接处理污水,并将FO浓水导入厌氧反应器进行能源回收。